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ABSTRACT: Extreme heat is one of the most pressing climate risks in the United States and is exacerbated by a warming

climate and aging population. Much work in heat health has focused only on temperature-based metrics, which do not fully

measure the physiological impact of heat stress on the human body. The U.S. Climate Reference Network (USCRN)

consists of 139 sites across the United States and includes meteorological parameters that fully encompass human tolerance

to heat, including relative humidity, wind, and solar radiation. Hourly and 5-min observations from USCRN are used to

develop heat exposure products, including heat index (HI), apparent temperature (AT), and wet-bulb globe temperature

(WBGT). Validation of this product is conducted with nearby airport and mesonet stations, with reanalysis data used to fill

in data gaps. Using these derived heat products, two separate analyses are conducted. The first is based on standardized

anomalies, which place current heat state in the context of a long-term climate record. In the second study, heat events are

classified by time spent at various levels of severity of conditions. There is no consensus as to what defines a heat event, so a

comparison of absolute thresholds (i.e.,$30.08, 35.08, and 40.08C) and relative thresholds ($90th, 95th, and 98th percentile)

will be examined. The efficacy of the product set will be studied using an extreme heat case study in the southeasternUnited

States. While no heat exposure metric is deemed superior, each has their own advantages and caveats, especially in the

context of public communication.
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1. Introduction

Heat is the deadliest annual weather-related hazard, caus-

ing an estimated average of 140 deaths per year (NWS 2020a),

with some studies attributing approximately 5000 annual

deaths to heat (Weinberger et al. 2020). Studies have shown

heat-wave count, duration, and intensity increasing since the

mid-twentieth century (Meehl and Tebaldi 2004; Perkins and

Alexander 2013; Mora et al. 2017; Rennie et al. 2019; Keellings

and Moradkhani 2020). According to Mora et al. (2017), 30%

of the global human population is currently at risk of exposure

to heat conditions exceeding a lethal threshold, and this per-

centage will increase to 48% and 74% by 2100 respectively

under the low (RCP2.6) and high (RCP8.5) greenhouse gas

emissions scenarios. While heat waves are often characterized

by only using daily maximum temperature, it is well known

daily minimum temperatures overnight can contribute to the

dangerous health impacts of heat events (Nicholls et al. 2008;

Habeeb et al. 2015; Nissan et al. 2017; Rennie et al. 2019). The

persistence of heat exposure throughout the night has been

shown to strongly impact people susceptible to extreme heat;

for example, during the European heat wave of 2003 (Habeeb

et al. 2015). Nissan et al. (2017) showed anomalously warm

minimum temperatures caused increased mortality rates, as

they inhibited people from getting enough sleep.

Studies have also shown heat and its effects on the human

body are intensified by high levels of humidity, resulting in

larger heat-related mortality and morbidity (Kalkstein and

Davis 1989; Curriero et al. 2002; Willett and Sherwood 2012;

Raymond et al. 2017; Limaye et al. 2018). When atmospheric

moisture content is high, human sweat cannot evaporate effi-

ciently, limiting the removal of latent heat from the body. This

lack of evaporative cooling allows overall body temperature to

reach higher levels when exposed to heat and/or physical ac-

tivity (Sherwood 2018). Raymond et al. (2020) found some

locales have already exceeded the upper physiological limit of

humidity for human tolerance, with values of wet-bulb tem-

perature Tw exceeding 35.08C, although not for long durations.

With an increase in both lower tropospheric temperature and

humidity, it is expected the number of heat-wave events will

increase by the end of the twenty-first century (Pachauri et al.

2014; Wuebbles et al. 2017; National Academies of Sciences

Engineering andMedicine 2017). Limaye et al. (2018) estimate

these increases could cause 12 000 excess deaths in the eastern

United States by 2050.

a. Heat exposure measurement overview

Substantial work has been performed to better characterize

heat impacts on humans. To account for heat and humidity,

Steadman (1979, 1984) developed linear regression models to

estimate the overall atmospheric heating impact called ap-

parent temperature (AT). The equations are representative of

several conditions (i.e., indoors, outdoor shade, and outdoor
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sun) and are based on temperature, vapor pressure, and wind. It

was initially developed for indoor conditions (Steadman 1979)

but was modified to include outdoor conditions (Steadman

1984). The definition of outdoor AT is based on a mathematical

model of an adult walking outdoors in the shade and includes

factors such as heat generation and loss, fabric resistance, vapor

pressure, wind speed, solar radiation, and proportion of body

clothed. Although they are not used universally, NOAA’s

National Centers for Environmental Information (NCEI) pro-

vide AT data for public consumption, and these data were used

byGrundstein andDowd (2011) to examine trends in theUnited

States and by Maier et al. (2014) to define heat exposure to

develop a vulnerability index for Georgia. Habeeb et al. (2015)

used AT at 50 U.S. metropolitan sites from 1961 to 2010 and

showed that the average U.S. city experienced 0.6 additional

heat waves per decade, a one-fifth-of-a-day increase in duration

per decade, intensity increases by 0.18C per decade, and an in-

crease in the heat-wave season by 6 days per decade.

From the work of Steadman (1984), NOAA’s National

Weather Service (NWS) developed its own equation, com-

monly referred to as the heat index (HI; Rothfusz 1990). The

HI was developed as a simplified version of AT that is based on

temperature and relative humidity (RH), two parameters that

are easily observed and reported. Since its implementation, it

has become a popular metric and is used to issue NWS heat-

related outlooks (Hawkins et al. 2017). Products are issued if

HI values exceed a fixed, or absolute, threshold, which can vary

between 40.68C (105.08F) and 48.98C (120.08F). These values

vary by NWS office, and, while they do take into account local

factors (sunlight, elevation, and time of day), there is no seasonal

variation in these thresholds. Currently, efforts are under way by

NWS to evolve its approach to issuing heat outlooks, starting in

the western region of the United States, using measures relative

to local and seasonal climatology (NWS 2020b).

While metrics such as AT and HI combine heat and hu-

midity, they struggle to comprehensively diagnose heat stress,

especially outdoors. Wet-bulb globe temperature (WBGT),

originally developed by the U.S. military, is widely considered

the most accurate indicator of heat stress on human health

short of heat balance modeling (Yaglou and Minard 1957;

Budd 2008, Lemke and Kjellstrom 2012, Patel et al. 2013).

WBGT is comprehensive because it incorporates radiant

heating and wind along with air temperature and humidity.

WBGT is used by the U.S. Department of Defense, the U.S.

Occupational Safety and Health Administration (OSHA), and

athletic organizations, including the American College of

Sports Medicine (ACSM). Although not adopted nationwide,

someNWSWeather ForecastOffices (WFO) includingRaleigh,

North Carolina, and Tulsa, Oklahoma, utilize WBGT.

WBGT requires three inputs: dry-bulb temperature T,

wet-bulb temperature Tw, and black-globe temperature Tg.

The first two components (T and Tw) are easily observed

and calculated, using temperature and humidity. However,

direct measurement of Tg is done with specialized instru-

mentation, known as a black-globe thermometer (Fig. 1),

that is not typical in standard meteorological station equip-

ment. If this instrument is not provided, Tg must be estimated

using heat mass and transfer algorithms, such as those

provided by Liljegren et al. (2008) and Dimiceli et al. (2013).

Studies by Lemke and Kjellstrom (2012) and Patel et al.

(2013) examined numerous Tg estimations and determined

the one provided by Liljegren et al. (2008) gave the most valid

results under outdoor conditions. Although not required,

additional adjustments that are based on activity and clothing

can be applied to WBGT to fully capture human heat stress

(OSHA 2021).

WBGT has been of interest in recent climatological

studies (Willett and Sherwood 2012; Grundstein et al.

2015; Heo et al. 2019; Carter et al. 2020). Grundstein et al.

(2015) updated a categorical system of WBGT for use

originally proposed by the ACSM and Georgia High

School Association (GHSA). In a 4-yr study of heat stress

in South Korea, Heo et al. (2019) found WBGT more ac-

curately diagnosed extreme heat intensity and duration

than air temperature did.

FIG. 1. Black-globe thermometer installed at the North Carolina

ECONet Site in Rocky Mount, North Carolina. The image was

provided by the NCSCO.
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b. Goals of this paper

The U.S. Climate Reference Network (USCRN) is a sys-

tematic network of climate monitoring stations across the

conterminous United States, Alaska, and Hawaii (Diamond

et al. 2013). Stations are sited and installed in open areas ex-

pected to have stable land cover and use conditions for several

decades to come. At each site, a suite of meteorological pa-

rameters is monitored, including triple redundancy for air

temperature. Other variables recorded atUSCRN sites include

solar radiation, RH, and 1.5-m wind speed. Because these

variables fully characterize outdoor heat exposure, the hourly

and 5-min USCRN observations are valuable for testing heat-

related indices at high temporal resolution, and for under-

standing the rural picture of heat exposure changes over time.

This paper describes in detail the methods used to take hourly

and 5-min USCRN data and derive AT, HI, and WBGT

products. These heat exposure derivations, along with directly

observed input variables, are tested and validated against

values from nearby meteorological sites reporting similar

variables.

Using the validated USCRN heat indices product, clima-

tologies can be generated with methods developed to calculate

hourly normals (Applequist et al. 2012). A method will be

described that generates robust climatologies from shorter

time series such as those of the USCRN (Leeper et al. 2019).

From these climatologies, two separate analyses of heat ex-

posure are conducted. First, standardized anomalies are used

to place current heat state in the context of the climate record.

Second, relative thresholds based on temperature distributions

will be generated to examine cases of extreme heat. A case

study of extreme heat is evaluated from an unseasonably warm

event from a humid location in the southeastern United States.

The remainder of the paper is structured as follows. Section 2

describes the datasets used in the study, and section 3 describes

the studymethod. The derived product, standardized anomalies,

and case study are shown in section 4. Section 5 discusses caveats

and limitations to heat indices, while section 6 summarizes the

results and provides areas of future work.

2. Data

a. USCRN

USCRN is a network of 139 climate monitoring stations in

the conterminous United States, Alaska, and Hawaii that col-

lects high quality observations of meteorological variables

relevant to heat-health studies such as air temperature, RH,

solar radiation, and 1.5-m wind speed (Diamond et al. 2013).

The sensors were deployed in 2001, with full CONUS coverage

of 114 stations achieved in 2008; 23 stations have been in-

stalled across Alaska with an additional 2 stations in Hawaii.

Temperature observations are recorded with triple redun-

dancy by three independent platinum resistance thermometers

of high accuracy that are housed in fan-aspirated triple-walled

radiation shields. These configurations result in enhanced

continuity and long-term accuracy of temperature observa-

tions, as the failure of one instrument leaves two more to

continue observations. Other sensors include a capacitive

thin-film polymer humidity sensor, a three-cup anemometer

for wind speed at 1.5-m height above ground, and a silicon

dome pyranometer to record solar radiation. Data are reported

every hour, with 5-min observations beginning in 2009. Both

hourly and 5-min data are used in this analysis.

b. Airport weather stations

For each USCRN station, the nearest airport weather

station with similar data coverage was retrieved from the

Integrated Surface Database (ISD; Smith et al. 2011). These

data are from Automated Surface Observing System (ASOS)

and Automated Weather Observing System (AWOS) stations

owned by both the NWS and Federal Aviation Administration

(FAA). Stations aremaintained semiannually, and instruments

include a hygrothermometer for temperature and dewpoint, a

rotating cup anemometer for wind speed at 10-m height above

ground, and a barometric pressure sensor. Data just before the

top of the hour are retrieved for this study.

c. North Carolina ECONet

In addition to comparing with ASOS stations, a local-scale

study is conducted at two sites in North Carolina, using ob-

servations from the Environment and Climate Observing

Network (ECONet). The North Carolina ECONet, operated

by the North Carolina State Climate Office (NCSCO), consists

of 43 weather stations across the state, reporting information

every minute. These stations are generally located at agricul-

tural research stations, and the stations residing in Mills River

and Durham, North Carolina, are within a few kilometers of a

USCRN station (2.1 and 4.7 km, respectively). These stations

report typical weather conditions such as temperature, hu-

midity, and wind. Holder et al. (2006) made comparisons with

ECONet stations and stations operated by the NWS Cooperative

Observer Program (COOP) and showed that daily maximum and

minimum temperature agreed well, with Pearson correlations of

0.96 and 0.89, respectively. In 2018, these sites were augmented

with a black-globe thermometer (Fig. 1) to aid in making direct

observations of WBGT.

d. Reanalysis data

To fill in data gaps, 0.258 hourly reanalysis data from the

European Centre for Medium-Range Weather Forecasts

(ECMWF), known as ERA5 (Copernicus Climate Change

Service 2017) is used. To estimate WBGT, surface pressure is

required. Since USCRN does not record pressure, it was

extracted from the grid point in ERA5 closest to each station.

In a similar fashion, surface solar radiation was extracted to

accommodate ASOS stations, which do not have a pyran-

ometer installed.

3. Method

a. Calculating heat exposure

For the USCRN and ASOS stations used in this study, heat

exposure is calculated as follows. TheHI is calculated based on

the Rothfusz (1990) method used by the NWS. The equation

is a polynomial fit to the apparent temperature using only air

temperature and RH inputs:
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HI5242:3791 2:049 015 233T1 10:143 331 273RH2 0:224 755 413T3RH2 0:006 837 833T2 2 0:054 817 173 (RH)
2

1 0:001 228 743T2 3RH1 0:000 852 823T3 (RH)
2 2 0:000 001 993T2 3 (RH)

2
,

where RH is the relative humidity (%), and T is the dry-bulb

temperature (8F). There are two adjustment factors applied to

the HI under certain conditions in which the basic formula fit is

less accurate. The first is if RH is less than 13% and the dry-

bulb temperature is between 26.78 and 44.48C. The second

adjustment occurs if the RH is greater than 85% and the dry-

bulb temperature is between 26.78 and 30.68C. For cases in

which the heat index is below 26.78C (808F), the equation is

simplified as

HI5 0:5fT1 61:01 [1:2(T2 68:0)]1 (RH3 0:094)g.

There are several varieties of AT. The outdoors in shade

equation of AT from Steadman (1984) is used in this study:

AT522:71 1:04T1 2e2 0:65y
10
,

where T is the dry-bulb temperature (8C), e is the vapor pres-

sure (hPa), and y10 is the wind speed at 10m (m s21). Because

USCRN records wind speed at 1.5m, an exponential adjust-

ment factor is applied to match winds at 10m, where surface

roughness and stability is not a factor. The shade version of AT

is used by necessity, as the version for heat exposure in direct

sunlight requires information not provided as standard mete-

orological variables.

The component equation used to calculate WBGT is as

follows from Yaglou and Minard (1957):

WBGT5 0:7T
w
1 0:2T

g
1 0:1T ,

whereTw is the natural wet-bulb temperature, Tg is the globe

temperature, and T is the dry-bulb temperature, all in de-

grees Celsius. The biggest limitation to using WBGT for

climatological studies is that it incorporates Tg, whose

measurement requires a black-globe thermometer that is

not standard (Fig. 1).

Over the years, various Tg estimation formulas have been

developed and compared with direct black-globe thermometer

measurements. These efforts include work with the Argonne

National Laboratory by Liljegren et al. (2008), and theNWSby

Dimiceli et al. (2013). Both of these estimations primarily used

standard surface variables as input data and use heat and mass

transfer algorithms to calculate Tg. Both methods were found

to be reasonably accurate over small regions and short time

periods. As examples, the Liljegren method exhibited an ac-

curacy of 1.08C or better at military depots in seven states, and

the Dimiceli method has been tested within an accuracy of

0.68C in the Tulsa, Oklahoma, area, during September 2010

and July 2011. These independent methods are applied and

tested at USCRN sites. The Liljegren method uses air tem-

perature, RH, wind speed, solar radiation, and surface pressure

as inputs, and both Tg and Tw are modeled using fundamental

principles of heat and mass transfer. This, combined with air

temperature, is used to calculate WBGT. Inputs for the

Dimiceli method are similar, with the exception of dewpoint

temperature instead of RH. This method only calculates Tg,

and to calculate Tw the equation from Stull (2011) was used,

using T and RH as inputs:

T
w
5T atan[0:151 977(RH1 8:313 659)

1/2
]

1 atan(T1RH) – atan(RH – 1:676 331)

1 0:003 918 38(RH)3/2 atan(0:023 1013RH) – 4:686 035:

Directly observed T, modeled Tg from Dimiceli et al. (2013),

and estimated Tw from Stull (2011) are combined to make a

secondary version of WBGT, hereby referred to as the effec-

tive Dimiceli method.

b. Validation using nearby networks

Hourly USCRN heat exposure values are compared with

nearby stations in the ASOS network. Distances between

neighboring stations varied from 0.6 to 142 km. The six stations

with the furthest distances (over 80 km) were in remote areas

of Alaska. Estimated values of HI, AT, and WBGT are com-

pared, as well as the input measurements of temperature, hu-

midity, and wind at or adjusted to the standard 10-m height

above ground level. Since ASOS stations do not report solar

radiation, these data were taken from the nearest grid in

ERA5. Pearson’s correlation is calculated between the two

networks for validation. Root-mean-square error (RMSE) and

bias are also calculated and are provided as online supple-

mental material. Results are stratified by all cases, daytime,

nighttime, and heat event cases. A heat event here follows the

work of Meehl and Tebaldi (2004); it must exceed the 98th

percentile for five consecutive hours, and it must occur for at

least three consecutive days. While HI, AT, and WBGT are

estimated at both networks, understanding local and climato-

logical variations in these estimates (and directly observed

inputs) are important to note, and can be used to aid in cali-

bration of future WBGT estimation algorithms.

In addition to the national validation analysis, a local anal-

ysis is included for two USCRN stations in North Carolina

(Asheville and Durham) within 2.1 and 4.7 km of stations

(Fletcher and Chapel Hill) in the ECONet, respectively. These

stations not only have all the required variables to estimate

WBGT, but also have black-globe thermometers and pyran-

ometers installed, so direct measurements of WBGT and solar

radiation can be compared with USCRN estimated WBGT

and measured solar radiation.

c. Quantifying heat severity

Regardless of metric used, it may prove valuable to quantify

heat exposure indices in the context of station histories. The

heat vulnerability of a population may vary with respect to the

conditions to which it is normally exposed. Standardizing ab-

solute observations can provide a relative measure of condi-

tions that account for locational and seasonal variations. The

most common approach is based on a climatology derived
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from a reference period (Arguez et al. 2012). Temperatures

fromNCEI’s Global Historical Climatology Network (GHCN;

Menne et al. 2012) and nClimGrid (Vose et al. 2014) are often

compared with their respective climatologies in climate mon-

itoring reports. Traditionally, a climatology of 30 years is re-

quired; however, shorter periods of record have been used

where a longer period record is not available. For example, the

last set of official U.S. climate normals (1981–2010) also pro-

vided an hourly supplemental normal based on 10 years of

information using data exclusively from the recently deployed

U.S. ASOS (Applequist et al. 2012). This short-term clima-

tology was generated using a sampling of hourly measurements

over a 15-day window for each day-of-year hour over the pe-

riod of record (Applequist et al. 2012). These hourly normals

have been shown to provide adequate information, and the

methodology has been used in standardizing other short-

duration datasets, including soil moisture (Leeper et al. 2019).

Another method for quantifying heat severity is comparing

the indices to thresholds. There is no single universal definition

of extreme heat, but it can be generalized as a period where

conditions exceed a critical threshold value (Robinson 2001;

Perkins and Alexander 2013). These thresholds can be abso-

lute in nature (i.e., $30.08, 35.08, and 40.08C) or relative, the
latter using standardized anomalies (i.e., $11 standard devi-

ation) or percentiles ($90th, 95th, and 98th). While numerous

absolute and relative based thresholds have been examined,

there is not one unified method for determining health out-

comes from heat events (Perkins and Alexander 2013;

Vaidyanathan et al. 2016; Smith et al. 2013). A study by

Grundstein et al. (2015) used relative WBGT thresholds to

estimate heat stress severity across athletic organizations in

the United States. NWS procedures (Hawkins et al. 2017)

utilize absolute thresholds to issue heat-related outlooks for

much of the United States.

Using hourly heat data from USCRN, normals are calcu-

lated in a similar manner to Applequist et al. (2012). Each

hourly normal was computed on the basis of the number of

possible values between 2009 and 2019, with a requirement to

have three years of data available. Creating the climatology

was done by aggregating over a particular date and time,

67 days, over the station periods of record. If more than 20%

of data were missing, the hourly normal was set to missing. The

number of possible values depend on the station periods of

record, ranging between 45 (3 years) and 165 (11 years). If

there was enough data, the arithmetic mean was computed and

considered the hourly climatology. Also, the 90th, 95th, and

98th percentiles were calculated from the available hourly

data, using a normal Gaussian distribution. These percentiles

are normally used when examining heat-intensity events

(Meehl and Tebaldi 2004; Perkins and Alexander 2013;

Rennie et al. 2019). Anomalies (observation–climatology)

and standardized anomalies (anomaly divided by standard

deviation) are calculated for assessment.

d. Case study

The performance of this set of heat exposure indices was

examined for an event located in the southeastern United

States, which experiences higher humidity because of its

proximity to the Gulf of Mexico and Atlantic Ocean and

prevailing southerly winds. An early October 2019 event is

evaluated in the piedmont areas of North Carolina, as air

temperatures reached 37.88C (100.08F) on 3 October. For the

case study, hourly and 5-min T, AT, HI, and WBGT values

are shown and examined. In addition, standardized clima-

tologies and percentiles are examined to quantify event se-

verity. The application of absolute versus relative heat

measures during this event is discussed.

4. Results

a. Validation of USCRN heat exposure indices to nearby

networks

Table 1 list the correlations between USCRN HI and AT

against nearby weather stations. Results are stratified geo-

graphically by all USCRN stations, as well as stations in the

southeastern United States, southwestern United States, and

North Carolina. These subregions are shown because of the

dominant prevalence of humidity (Southeast) or lack thereof

(Southwest). An additional analysis is provided for North

Carolina, where two USCRN stations are analyzed against a

pair of ECONet stations. The results are also stratified by

daytime and nighttime hours on all days and during extreme

events, defined as exceeding the 98th percentile for five con-

secutive hours, and it must occur for at least three consecu-

tive days.

Overall, results for HI and AT are strongly positively cor-

related for all stations, as the diurnal cycle of all these indices

typically generate strong relationships. The all-station category

TABLE 1. Pearson’s correlation of HI and AT between USCRN and neighboring stations, stratified by geography, time of day, and

whether heat conditions are extreme. All rows examine correlations between USCRN and ASOS, with the exception of the North

Carolina row, which examines USCRN and nearby ECONet sites.

All data Daytime Nighttime Extreme (daytime) Extreme (nighttime)

All (HI) 0.93 0.93 0.91 0.90 0.84

Southeastern United States (HI) 0.96 0.97 0.96 0.95 0.92

Southwestern United States (HI) 0.80 0.78 0.76 0.64 0.65

North Carolina (HI) 0.98 0.98 0.97 0.98 0.93

All (AT) 0.91 0.91 0.91 0.86 0.84

Southeastern United States (AT) 0.96 0.96 0.96 0.93 0.92

Southwestern United States (AT) 0.78 0.75 0.73 0.62 0.65

North Carolina (AT) 0.97 0.96 0.95 0.96 0.92
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demonstrates this with a correlation coefficient of 0.93.

Correlations are lower at nighttime, especially during ex-

treme event cases. This is likely due to local variations in RH

at night, which can be affected by surrounding land cover and

topography. The southeastern United States performs very

consistently, with correlation coefficients above 0.92 across

the board. However, the southwestern United States does not

perform as well, with correlations no higher than 0.80. This is

possibly due to elevation and topographic differences be-

tween neighboring stations, as the western United States is

generally more mountainous. Another factor is lower hu-

midity in these areas, and the assumptions within the HI

equation set for low humidity conditions. The equation used

by Rothfusz (1990) has an adjustment factor when RH is

lower than 13%, which frequently occurs in arid areas. In

general terms, heat events in the southwestern United States

are primarily dominated by air temperature, and incorpo-

rating the HI provides a lower value than temperature due to

evaporative cooling accounted for by the model on which the

HI is based. This can be counterintuitive from a communi-

cations perspective. Table S1 in the online supplemental

material provides RMSE and bias values and are consistent

with correlation results. HI biases range between 22.70 and

0.87 and RMSE between 0.70 and 8.37. The highest RMSE

values correspond to the lowest correlations, in the western

United States, AT results are generally similar in pattern but

with lower correlationmagnitudes (and higher RMSE values)

than their HI counterparts. While HI and AT both incorpo-

rate temperature and humidity, AT also includes wind. Wind

speed can vary substantially by location and can cause dif-

ferences in the resulting AT value between USCRN and

ASOS stations, especially at nighttime when wind speeds are

low. AT calculations are very sensitive to low wind speeds.

Nonetheless, correlations are still very strong for the south-

eastern United States, with values above 0.92.

Table 2 provides USCRN to ASOS/ECONet comparison

results for the two estimation methods of WBGT. For all data,

results are generally strong with correlation coefficients of 0.89

for the Liljegren method, and 0.93 for the Dimiceli method.

Table S2 in the online supplemental material provides RMSE

and bias values and are consistent with correlation results.

These two WBGT methods appear to have similar correlation

results to those of HI and AT. As expected, correlations in the

southwestern United States are not as strong, due to lower

humidity and differences in topography. Daytime extreme

events have the lowest correlations when comparing USCRN

with ASOS/AWOS stations using the Liljegren et al. (2008)

method. Correlations of 0.68, 0.78, and 0.49 exist for all,

southeastern and southwestern USCRN stations, respectively,

with RMSE values of 7.08, 7.42, and 7.38, respectively. This is

possibly due to the use of ERA5 for solar at ASOS stations.

ERA5 is on a 0.258 grid and may not resolve mesoscale vari-

ations in cloud cover. The Dimiceli method yields a higher

correlation than the Liljegren method in all cases, with the

exception of North Carolina stations. Here, the Liljegren

method performs well, with 0.94 (6.02 RMSE) in all cases,

and 0.88 (7.15 RMSE) in extreme daytime cases comparing

USCRN estimates to a pair of stations that directly measures

all the components in the WBGT.

To contextualize the variation in results, variables used to

calculate HI, AT, and WBGT, are shown in Table 3. As ex-

pected, temperature is the best performer in most cases, since

it is a spatially continuous variable. The exception is the

Southwest, as it has a correlation of 0.80, while surface pres-

sure, another spatially continuous variable, is higher (0.88).

The variable with the lowest correlation is wind, with coeffi-

cients ranging between 0.20 and 0.34, even after adjusting

USCRN 1.5-m winds for elevation above ground to match

ASOS 10m winds. Wind is not spatially continuous at the

surface due to friction and local terrain characteristics. When

comparing USCRN sites with ASOS/AWOS stations, surface

pressure and solar radiation are taken from the ERA5 re-

analysis model dataset. Results are generally good for surface

pressure, with correlations between 0.81 and 0.83. Results

varied with solar radiation, with correlation correlations be-

tween 0.69 and 0.82. RMSE values (provided in Table S3 in the

online supplemental material) were large, varying between 126

and 176 for ASOS comparisons, and 35–40 for ECONet. As

stated previously, small variations in cloud cover may not be

resolved on ERA5 grids, thus affecting solar radiation results.

Nonetheless, while the use of direct observations is ideal, filling

in gaps with reanalysis data can be an acceptable alternative.

Although only two station pairs are available in the North

Carolina analysis, it appears all variables are better correlated

between USCRN and ECONet stations than to ASOS/AWOS

stations, as they were located within 5 km and at similar ele-

vations. This is especially true with wind, as their correlation

coefficients are much higher than ASOS/AWOS counterparts,

ranging between 0.55 and 0.67 (and RMSE between 0.29 and

0.61). Solar radiation correlations were very high as direct

observations were gathered at both locations and were not

reliant on reanalysis data over a broader region. The closest

TABLE 2. As in Table 1, but for WBGT (Liljegren 2008; Dimiceli 2013).

All data Daytime Nighttime Extreme (daytime) Extreme (nighttime)

All (Liljegren) 0.89 0.84 0.93 0.68 0.88

All (Dimiceli) 0.93 0.94 0.92 0.91 0.88

Southeastern United States (Liljegren) 0.92 0.90 0.96 0.78 0.94

Southeastern United States (Dimiceli) 0.97 0.97 0.96 0.96 0.93

Southwestern United States (Liljegren) 0.80 0.67 0.78 0.49 0.65

Southwestern United States (Dimiceli) 0.81 0.78 0.77 0.63 0.66

North Carolina (Liljegren) 0.94 0.88 0.93 0.88 0.84

North Carolina (Dimiceli) 0.77 0.61 0.93 0.59 0.81
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ASOS stations varied between 1 and 80 km and may have

differing elevations, especially in the western United States.

For accurate comparisons, it is ideal for stations to be as close

together as possible, with similar, direct observations. As a

result, the Liljegren method to calculate WBGT outperforms

the Dimiceli method at these two sites. Lemke and Kjellstrom

(2012) and Patel et al. (2013) showed the Liljegren method was

the best model to calculate WBGT, especially in outdoor

conditions. For these reasons, the final production of USCRN

WBGT uses the Liljegren et al. (2008) estimation method.

b. Quantifying heat severity using standardized anomalies
and heat thresholds

Hourly climatologies and percentile thresholds of T, HI,

AT, and WBGT are generated using methods described in

Applequist et al. (2012). Table 4 displays the 98th-percentile

thresholds, averaged by region, for the months of May–

October. This calculation was done for afternoon hours, be-

tween 1200 and 1800 local time. The high percentile thresholds

peak in July as expected, with a considerable fall off in October

relative to the other warm-season months May–September.

With a warming climate, it is expected late spring and early

autumn months will have an increased probability of warm

temperature extremes, which can have impacts on health and

agriculture (Wuebbles et al. 2017). In looking at the south-

eastern and southwestern regional averages, note that the 98th-

percentile values are generally in the low to mid-308C. The
NWS uses considerably higher absolute thresholds in most

areas of the United States beginning with an HI of 40.68C
(105.08F) to administer heat outlooks (Hawkins et al. 2017).

In general, HI and AT values are higher than their tem-

perature counterparts, especially in the midsummer period. By

adding the effects of humidity, a person’s ‘‘feels like’’ tem-

perature is increased. The exception to this is the southwestern

United States, where temperature is dominant in the area, and

lower RH values lead to a decrease in HI, a common issue in

the area. While the units of WBGT (8C) are the same as the

other exposure products, they are systematically lower in most

cases. This property is a well-known result of the combinatorial

weights in the WBGT equation; however, these lower values

can be perceived differently by the public with regards to se-

verity. This is explored in more detail in the discussion section.

Figure 2 depicts a geographic view of the July 98th percen-

tiles for the heat indices. As expected, higher temperature

thresholds exist in southern regions of the United States. The

percentile value for temperature can vary between 19.68 and
49.38C (67.38–120.78F). Values are similar for both HI and AT,

ranging between 19.48 and 45.08C (67.08–113.08F), and 19.78
and 47.68C (67.58–117.78F), respectively. WBGT values tend to

TABLE 3. As in Table 1, but for input variables forWBGT calculations. Asterisks indicate variables that were sourced from ERA5 output

for either USCRN (air pressure) or ASOS (solar radiation).

All data Daytime Nighttime Extreme (daytime) Extreme (nighttime)

All T 0.92 0.92 0.89 0.88 0.82

RH 0.82 0.84 0.74 0.81 0.74

Pressure* 0.81 0.81 0.81 0.81 0.83

Wind 0.34 0.34 0.28 0.21 0.20

Solar* 0.82 0.69 — 0.69 —

Southeastern United States T 0.96 0.97 0.96 0.94 0.92

RH 0.74 0.76 0.48 0.77 0.53

Pressure* 0.76 0.76 0.77 0.70 0.75

Wind 0.40 0.36 0.38 0.10 0.11

Solar* 0.79 0.66 — 0.68 —

Southwestern United States T 0.80 0.78 0.74 0.65 0.66

RH 0.76 0.75 0.73 0.59 0.67

Pressure* 0.88 0.88 0.87 0.89 0.89

Wind 0.17 0.21 0.12 0.09 0.06

Solar* 0.86 0.72 — 0.74 —

North Carolina T 0.98 0.98 0.96 0.98 0.93

RH 0.94 0.96 0.93 0.97 0.95

Pressure 0.87 0.87 0.88 0.89 0.90

Wind 0.67 0.62 0.55 0.67 0.56

Solar 0.97 0.95 — 0.95 —

TABLE 4. The 98th-percentile thresholds (8C) of afternoon

(1200–1800 local time) T, HI, AT, and WBGT at USCRN sites,

averaged by region, using a standardized climatology method, for

the months between May and October.

May Jun Jul Aug Sep Oct

T All 27.3 30.9 32.2 31.1 28.9 23.5

Southeast 31.0 33.5 34.1 33.5 32.5 29.0

Southwest 28.9 33.3 34.3 33.3 31.4 26.1

HI All 26.8 31.1 33.0 31.8 28.9 23.0

Southeast 32.3 36.8 38.5 38.0 35.0 30.7

Southwest 26.8 30.8 32.1 31.3 29.5 24.5

AT All 25.5 30.0 31.8 30.8 28.1 21.8

Southeast 31.6 35.0 36.0 35.6 34.0 29.8

Southwest 25.7 30.8 32.3 31.4 29.2 23.6

WBGT All 24.4 27.6 29.0 28.1 25.8 20.7

Southeast 29.6 32.0 32.8 32.5 30.5 27.2

Southwest 23.3 26.1 27.6 27.1 25.3 21.0
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be lower than T, HI, and AT, with a range between 23.08 and
37.48C (73.48–99.38F). This can have implications if WBGT is

used for communicating heat information to the public, as it

can be perceived that a dangerous value ofWBGT (e.g., 32.28C
or 90.08F) is not unusual or impactful enough to alter plans for

outdoor activities.

As seen in Fig. 2, the 98th percentile can vary considerably in

short distances, especially in areas with considerable elevation

change. For example, in July the HI 98th percentile in Durham

is 38.38C (101.08F). In North Carolina, an HI of 40.68C
(105.08F) is needed to trigger an excessive heat warning

(Hawkins et al. 2017). While 40.68C is above the 98th percen-

tile, it is well within the statistical range of possibilities.

However, in Asheville, a city in the mountainous western

portion of North Carolina, the July HI 98th percentile is only

32.78C (90.88F). Therefore, the 40.68C criteria for a heat-

related advisory to be issued by the NWS is rare. In fact, ar-

chives going back to 1986 show there have been little to no

heat-related advisories issued in western North Carolina

(Fig. 3; Iowa Environmental Mesonet 2020).

Another way to attribute the difference between absolute

and relative thresholds, Figs. 4 and 5 are plotted examining the

duration of time spent at levels of high heat in 2012 using

absolute and relative thresholds, respectively. The year 2012 is

the warmest on record nationally overall, and the second

warmest for overnight temperatures. If using an absolute

threshold of 32.58C (90.58F), virtually all hours exceeding this

FIG. 2. Climatological 98th percentile (8C) of July afternoon (1200–1800 local time) T, AT, HI, and WBGT data at USCRN sites.

FIG. 3. Number of heat advisories issued by NWS offices for the

state of North Carolina between 1986 and 2020. Data are from

Iowa Environmental Mesonet (2020).
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level exist in the southern parts of the United States, where

temperatures are normally warmer. If, instead, a relative

threshold is used (95th percentile, Fig. 5), it can be shown that

high heat periods can happen at virtually every USCRN site.

This is especially true for the upper Midwest regions of the

United States, which were experiencing an exceptional

drought in 2012. WBGT would also benefit from a relative

threshold since its values are typically lower.

c. Case study: Autumn 2019 heat in the southeastern United

States

On 3 October 2019, high pressure off the coast of North

Carolina provided an unseasonably warm day for the south-

eastern United States. Raleigh–Durham airport reached a

daily maximum temperature 37.78C (100.08F) in the afternoon,

which not only became a record for that day but was also the

highest temperature recorded in Raleigh for the 2019 year.

Figure 6 displays the time series of temperature, HI, AT, and

WBGT for the Durham, North Carolina, USCRN station

(approximately 29 km from the Raleigh–Durham airport) for

3 October. According to the station’s climatology, 3 October

is expected to be in the low 208s to mid-208s in Celsius for

all variables. On 3 October 2019, the temperature surpassed

32.28C (90.08F) for over 6 h, with amaximum of 36.38C (97.38F)
at around 1500 local time. RHvalues were generally low for the

day (between 27% and 35% for most of the day). As a result,

HI and AT values never surpassed 36.78C (98.08F). The hourly
values of AT andWBGT have more variation when compared

with the T and HI counterparts because of the varying nature

of wind and solar. This is especially seen in the 5-min data and

appears to be removed when applying a 15-min smoothing

function. WBGT experienced a sharp increase in the morning

as the sun came out. The maximum WBGT value was 30.88C
(87.58F), which according to athletic risk categories in Grundstein

et al. (2015), athletes should ‘‘limit intense exercise and total daily

exposure to heat and humidity.’’

Table 5 places the maximum heat exposure recordings and

in context to its climatology. The standardized anomaly

(anomaly divided by the standard deviation) is around two

standardize units or higher for all variables, a considerably

warm event for this time of year. Themaximum recorded value

also exceeded the station 98th percentile value for October

daytimes. While heat was mentioned in the forecast products

from the NWS such as hazardous weather outlooks and area

forecast discussions for this day, no heat advisory or warning

was issued, because the HI threshold of 40.68C (105.08F) was

FIG. 4. Number of hours in 2012 that T, AT, HI, or WBGT was greater 32.58C (90.58F).
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not reached (Hawkins et al. 2017). However, HI was 5.08–8.08C
above the 98th percentile, which is substantially hazardous for

early October. If percentile metrics were used, it would have

been clear that these conditions warranted notification for

student athletics and other outdoor activities to be curtailed.

5. Discussion

a. Heat exposure measurement assumptions

The HI is a widely accessible, easy-to-develop heat product. It

is also the best metric when validating USCRN data to nearby

ASOS/AWOS sites. However, the equation used (Rothfusz

1990) assumes a person is in the shade and experiencing light

winds. In the presence of direct sunlight, the human feels-like

temperature can be higher because of the body absorbing in-

coming solar radiation.As a result, HImay not be the bestmetric

for outdoor conditions, especially when there is no shade avail-

able. Additionally, numerous assumptions are made when cal-

culating the HI value, including special conditions not met well

by the original regression equation, such as low humidity. As a

result, the HI value is inadequate for some conditions in the

western areas of the United States, where RH values can typi-

cally be less than 10% during summer. For example, on

16 August 2020 the Cooperative Observer (COOP) weather

station at theDeathValleyNational Park ServiceVisitorsCenter

in Furnace Creek, California, recorded a high air temperature of

54.48C (1308F) at 1541 local time. At the same time, a nearby

USCRN site in Stovepipe Wells, California, recorded a maxi-

mum temperature of 51.58C (124.78F). The RH values were less

than 10% during the day, and as a result the highest HI recorded

at each site was only 44.48C (112.08F). NWSoffices in thewestern

United States rarely use HI, and their new product, known as

NWS Heat Risk, only incorporates temperature (NWS 2020b).

The AT version most typically used assumes shaded condi-

tions outdoors, and also would underestimate heat exposure in

direct sunlight. Steadman (1984) did produce alternative ver-

sion of AT that included sunlight effects, but these do not

utilize standard values that are currently observed or easily

estimated. While wind is represented in the form of the

equation used here, it is highly sensitive to local terrain effects.

This can be seen when comparing with nearby ASOS/AWOS

stations in Table 3, and when examining hourly and 5-min ef-

fects in Fig. 6. By using a 15-min smoothing window, these

variations tend to filter out.

WBGT incorporates all components of heat exposure (tem-

perature, humidity, wind, and solar) and is considered to be one

FIG. 5. Number of hours in 2012 that T, AT, HI, or WBGT was greater than the station’s 95th percentile for that given hour.
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of the best metrics for outdoor conditions (Lemke andKjellstrom

2012; Patel et al. 2013). However, it has not been widely used in

observational climate studies due to questions about estimation

accuracy across diverse climate regions, as well as the lack of

black-globe instruments for verification. Direct observations

of WBGT and Tg are rare, and while the estimation algorithms

of Liljegren et al. (2008) andDimiceli et al. (2013) prove useful,

they were calibrated at selected sites, such as military bases in

seven states (Liljegren et al. 2008) and locations around Tulsa

(Dimiceli et al. 2013). These methods do not encompass the

entire climatological makeup of the United States, and there-

fore should be recalibrated to reflect varying climates of the

United States, especially in the Southeast and Southwest. The

Liljegren method was selected for this study because of its

successful validation at two sites in North Carolina. While both

methods were tested for consistency between USCRN and

FIG. 6. Time series of T, AT, HI, and WBGT at the Durham USCRN site for 3 Oct 2019. Data include hourly values (dark blue) and

climatology (light blue), along with original (brown) and smoothed (orange) 5-min data values.
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ASOS/AWOS stations nationwide, the North Carolina ECONet

was considered to be the more valuable test, because its stations

had direct observations of everyWBGT variable and were within

5km of USCRN sites, thus providing the best validation results.

Othermesonets outsideNorthCarolina should be incorporated in

future validation tests, with appropriate black-globe thermome-

ters and pyranometers installed. Note also that in some cases in

which directly observed measures of solar radiation and pressure

are not available the reanalysis data are utilized. While the com-

parisons are deemed acceptable (Table 3), there might be spatial

discontinuities, because ERA5 is a 0.258 dataset. This is especially
important for solar radiation because there can high variability

over short distances, especially in the summer months in the

presence of cumulus clouds.

WBGT is highly sensitive to microclimates and can vary by

geographic region. Carter et al. (2020) indicated uncertainties in

WBGT due to variations in radiation resulting from the degree of

site shading, in wind speed resulting from local surface roughness,

and in humidity and air temperature because of wetness of the

surrounding area. Budd (2008) mentioned issues with WBGT

when there is little or no air movement. While WBGT values

should be higher with lowwind speeds (due to lack of evaporative

capacity), this increase is not typically seen. WBGT is also highly

sensitive to solar radiation, as can be seen in Fig. 6 and Table 3.

Sherwood (2018) noted wind and radiation impacts can vary

greatly depending on exactly where someone is located and what

clothing they are wearing. Hajizadeh et al. (2017) also noted solar

radiation fluctuations, with an R2 value of 0.233 when comparing

sites in Iran. Instantaneous and high temporal resolution values of

WBGT can vary greatly. Simplified versions of WBGT (Willett

and Sherwood 2012) could be used in these circumstances, which

depend on variations in temperature and vapor pressure with

assumptions about wind and radiation. Because this simplified

version is similar to AT, it is not included here.

b. Relative versus absolute thresholds

An important use of these heat metrics is to quantify the se-

verity of threat to human health. Although no single exceedance

threshold has proven to be the most effective in determining risk,

severity of heat health risk is usually quantified using a variety of

absolute (i.e.,$ n8) or relative ($nth percentile) limits. Currently,

the NWS applies absolute thresholds in many places across the

United States (Hawkins et al. 2017). This threshold is unchanged,

regardless of time of year or other characteristics such as local

sensitivity and adaptive capacity. Other studies (Meehl and

Tebaldi 2004; Grundstein et al. 2015) have shown relative

thresholds often provide a better understanding of local heat se-

verity. Additionally, Grundstein et al. (2018) showed relative

thresholds are important when considering fatal exertional heat

stroke deaths. Using USCRN derived climatologies of HI, AT,

and WBGT, an analysis of absolute and relative thresholds is

performed. Results show more events are captured when using

relative thresholds (Fig. 5, Table 4), especially outside the summer

months. The North Carolina heat event in October 2019 had

unprecedented HI values at the USCRN site (35.48C or 95.88F),
which was 6.38C above the 98th percentile for October (29.18C or

84.48F). However, because the HI needs to be at least 40.68C
(105.08F), no heat-related outlook was provided by the NWS. If a

percentile-based method were utilized, information could have

been sent to proper organizations, such as athletics and emer-

gencymanagers, to take appropriate precautions. This issue is not

tied to one single event or year. Figure 7 shows the monthly

summary of hours above a certain relative or absolute HI

threshold in Asheville, a mountainous area that generally expe-

riences cooler temperatures than the lowlands of the state. Heat

indices very rarely get to 35.08C (95.08F) but often exceed the

90th, 95th, or 98th percentile.

A serious consideration should be made for applying rela-

tive thresholds, but that does not mean it will not come with its

own complications. Percentile thresholds here are utilized

from the stations period of record, which can range between 3

and 11 years. Not only are distributions based on varying years,

there also is no consensus on the appropriate number of years

needed (i.e., 5 vs 30 years). For a better conceptualization of

the station’s climate, thresholds should be recalculated with a

consistent number of years, and on an annual basis, to reflect

the most updated conditions. This will systematically introduce

a bias in analyzing events over time, since the thresholds could

change each year. Also, fixed numbers are easier to communi-

cate to the public. People comprehend fixed numbers (35.08C)
better than a statistical percentile (98th) and might take more

action if they know the number is substantial. Absolute thresh-

olds are still important to incorporate, as well as allowing for

warning rules to change with the seasons. For example, one may

exceed a 98th-percentile temperature in late autumn and not

reach a physiologically severe heat exposure. Likewise, the same

level of heat exposure in the late spring as opposed to autumn

might have more deleterious impacts on human because they

have not yet acclimatized to the onset of summer conditions.

Therefore, percentile-based thresholds may need to be gradu-

ated with season if used to provide heat exposure warnings to

the public.

c. Communicating WBGT

WBGThas beenwidely used in recent years, especially within

the NWS. WFOs in Oklahoma, North Carolina, and elsewhere

TABLE 5. Statistics (8C) on 3 Oct 2019 heat at the DurhamUSCRN site, including maximum recorded value, standardized (std) anomaly,

and percentile thresholds for the month of October.

Max recorded Std anomaly Oct 90th percentile Oct 95th percentile Oct 98th percentile

T 36.3 2.5 25.6 27.1 28.5

HI 35.4 2.3 25.7 27.4 29.1

AT 36.4 2.3 25.7 27.3 29.0

WBGT 30.8 1.9 23.7 24.8 25.9
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are utilizing WBGT in their heat safety messaging. NWS fore-

cast models, such as the National Digital Forecast Database

(NDFD) have also begun to compute WBGT nationally.

Despite recent successes, communicating WBGT can be a

challenge. While WBGT exists on the same scale as other heat

metrics (Fahrenheit or Celsius), values tend to be reported in a

lower range, creating a problem with human recognition of

dangerous WBGT values. Recall that WBGT requires T, Tw,

andTg. The weighting ofTw (70%) is much higher than that ofT

and Tg (10% and 20%, respectively). Since Tw is the tempera-

ture a parcel needs to cool down to for saturation, Tw (and thus,

WBGT) are lower than the standard temperature. Table 4 and 5

indicate very dangerous conditions are reached at or above a

WBGT of 32.28C (90.08F), but the range of WBGT values is

considerably lower thanHI values for the same temperature and

humidity. Figure 8 indicatesWBGT values virtually never occur

above 32.58C (90.58F) in Asheville. This can create public con-

fusion in any location since people might associate these tem-

peratures as a nonthreatening situation. This is consistent with

results of Grundstein et al. (2015), who updated a categorical

system of WBGT for use originally proposed by the ACSM and

GHSA. The WBGT severity categories for the southeastern

United States range between 25.78C (78.28F) and 32.28C
(90.08F). According to their work, values above 32.28C (90.08F)
are indicated as an extreme, life threatening value of WBGT,

and all outdoor exercise should be cancelled. However, a

similar value of HI is not considered a threat, and the public

may attempt to apply this thinking to WBGT.

Adoption ofWBGT heat exposure measure in a widespread

fashion will be a communication challenge, and the role of

social science will be extremely important. One of the ways to

overcome this challenge is to provide categorical risk infor-

mation rather than numerical values, similar to the U.S.

Drought Monitor (USDM; Svoboda et al. 2002). Without

providing specific numbers, the USDM displays results by

categorical risk (e.g., D0, D1) to indicate stages of drought.

These categories are based upon underlying drought data and

its characteristics, and different precautions are considered for

each level. In theory, a similar method could be applied to

WBGT or any heat exposure metric, such as H0 or H1. These

levels could be based on relative thresholds, which already take

into account geography and seasonality. Grundstein et al. 2015

updated categorical risks using percentile thresholds ofWBGT

to quantify the value in the context of athletic activities. This

categorical approach, using relative thresholds, has been

widely used by athletic organizations for warm-season sporting

operations. Other organizations, such as the Southeast Regional

Climate Center (SERCC), the NCSCO, and the NWS Office in

Raleigh, North Carolina, have already adopted this categorical

method. A similar approach could be utilized using USCRN

data, but other sectors should be considered in addition to ath-

letics (such as agriculture, energy, and health).

6. Conclusions

Three heat exposure variables (HI, AT, and WBGT) were

calculated for 139 stations of the USCRN for both hourly and

5-min intervals. Similar computations were made with ob-

servations from nearby ASOS/AWOS and mesonet stations;

when compared, the methodologies produced consistent

FIG. 7. Number of hours in a given month the HI is above (top) an absolute threshold or (bottom) a relative threshold, from 2009 to 2019

for a USCRN station in Asheville.
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results between networks, with correlation coefficients gener-

ally above 0.77. A derived product consisting of these measures

of heat exposure in the USCRN beginning in 2009 is available

for public access. From these data, hourly climatologies are

calculated at each site, using a 15-day window explained by

Applequist et al. (2012) to incorporate as many data as possible

for stations with short time periods. From these climatologies,

the mean, and distribution percentiles (90th, 95th, and 98th) are

calculated, and are also publicly available. A case study in the

southeastern United States was investigated, and challenges in

communicating heat exposure and severity still exist, regardless

of which metric used.

While this work mainly focused on USCRN stations, the

underlying algorithms can be used at any site that records

standard meteorological variables. The paired analysis with

ASOS/AWOS stations in the validation portion of the study

indicates that these methods could be applied to over 2000

airport stations across the country. While estimations of HI,

AT, and WBGT are made at both ASOS and USCRN sites, a

comparison of its input variables (Table 3) shows that results

are adequate and could be expanded to the entire ASOS net-

work.Moreover, sensitivity in these results could be used to aid

calibration of future Tg and WBGT estimations, including

those provided by Liljegren et al. (2008) and Dimiceli et al.

(2013). In addition, other networks and mesonets, including

ones operated by the U.S. Department of Defense, have begun

installing black-globe thermometers at some of their sites, so

direct measures of WBGT can be made at more locations and

estimation methods improved with these more spatially dis-

tributed data. A dataset of HI, AT, and WBGT observations

can be developed from directly observed conditions measured

using standard instrumentation and reanalysis data to fill in

data gaps. In addition to point observations, gridded data devel-

oped from in situ measurements, including NCEI’s nClimGrid

(Vose et al. 2014), canbe used to calculate a high spatial resolution

version of HI, AT, and WBGT. This gridded dataset can be

compared to reanalysis datasets, such as ERA5, and even forecast

products, including the NWS NDFD, which currently has HI in-

stalled, along with WBGT as an experimental product.

Work continues to link these derived heat exposure vari-

ables to the vulnerability of people to heat in North Carolina

and the southeastern United States. Characteristics of heat

vulnerability can be determined through the analysis of mul-

tiple census variables indicative of socioeconomic circum-

stances, living conditions, age and/or disability, and health

(Reid et al. 2009). Weighting station or gridded measures of

heat exposure by vulnerability can lead to improved under-

standing of previous heat-wave events that impacted society

and help to prepare the adaptive capacity to respond faster and

more effectively to future events.

While some communication issues were discussed ear-

lier, more work needs to be done not only to make the heat

exposure measurements more understandable, but also to

improve the public response to dangerous heat events.

Members of the weather and climate enterprise need to

work together alongside epidemiologists and emergency

managers in order to improve upon the messaging of fore-

casts and mitigation recommendations. This is especially

true if an agency utilizes WBGT, which can typically

have lower values compared to related HI and AT. By

combining useful thresholds for heat severity, locating

populations vulnerable to this exposure, and effectively

FIG. 8. As in Fig. 7, but for WBGT.
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communicating the forecast and precautions, it is believed

lives will be saved.
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